Flares are the explosive phenomena on stellar surfaces, and sudden brightenings are observed in a broad wavelength range. Especially, flares observed in visible continuum are called white-light flares. Recently, many superflares on solar-type stars which have 10-10,000 times higher energies than the largest solar flares are discovered as white-light flares with Kepler space telescope (Maehara et al. 2012; Shibayama et al. 2013). According to the statistical study of superflares, there is a correlation between its energies (E) and its durations (t): $t \propto E^{0.39}$ (Maehara et al. 2015) which is similar to that of the solar hard/soft X-ray: $t \propto E^{0.2 \sim 0.4}$ (Christ et al. 2008; Veronig et al. 2002). This suggests the universal mechanism of energy release on solar and stellar flares (magnetic reconnection). In order to observationally demonstrate that solar and stellar flares can be explained by a unified mechanism, it is necessary to examine the correlation between energies and durations of solar “white-light” flares. Then, we carried out a statistical study on about 50 solar white-light flares with SDO/HMI Continuum. As a result of the analysis, the power law index of the t-E relation on solar white-light flares is found to be consistent with that on stellar superflares and solar hard/soft X-ray flares. However, the durations of solar white-light flares are one order of magnitude longer than that expected by the t-E relation of stellar superflares. This may imply that solar white-light flares with short durations are not detected since SDO/HMI does not have enough time resolution, or stellar superflares with low energies and long durations may not be detected because of the sensitivity of instrument.