Thermal plasma particles have magnetic moment, which is proportional to the temperature, inversely proportional to the magnetic field strength, and directed anti-parallel to the field (diamagnetic). Charged particles moving in the magnetic field get magnetic moment as well as angular momentum from the field. They do not disappear by mutual collisions in the plasma as a whole. Magnetic moment is one of the key properties of plasma in the magnetic field. In the plane perpendicular to the field, magnetic moment is the origin of magnetization current and the drift current. Total pressure balance is established through these currents. Along the field, magnetic moment is the origin of the mirror force when magnetic field strength have gradient. Generally, magnetic field decreases upward, hence the force is directed upward. When the mirror force exceeds the gravity force, the total force is directed upward. In a closed magnetic field configuration, plasma are trapped around the loop top where magnetic field is weakest. In an open magnetic field configuration, plasma flow upward. Due to temperature dependence of magnetic moment, the flow is temperature dependent. Magnetic moment is not included in the MHD theory.