Coronal mass ejections are powerful drivers of space weather, and are therefore important to understand and predict. Over the last 10 years, the suite of instruments on the Hinode satellite has provided a wealth of information about CME initiation and evolution. SOT provides detailed information about the photospheric magnetic field changes before and during an eruption. EIS provides spectroscopic information at coronal temperatures, which can lead to identifying eruption precursors. XRT follows the evolution of hot structures such as sigmoids that sometimes develop in active regions prior to an eruption. In this talk, I will review the current thinking about the initiation of CMEs, with a particular focus on the important contributions from all of the instruments on Hinode.