The trigger mechanism(s) and the condition(s) of solar flares are still unclear, although many studies have attempted to reveal them. Kusano and Bamba et al. 2012 (KB12) also tried to understand the flare trigger mechanism based on the ensemble MHD simulations. We proposed that the occurrence and property of flares can be controlled by two parameters: the shear angle of the large-scale magnetic field and the azimuth of a small-scale bipole field appearing on the polarity inversion line. In particular, we found that the two-types of small-scale bipole field can trigger flares: so-called the Opposite Polarity and the Reversed Shear types. Bamba et al. examined the KB12 model using the Hinode, SDO, and IRIS data, and demonstrated that the trigger process of several events was consistent with the model. However, they also pointed out that it is likely to be some other parameters to determine the occurrence of flares, because there were various flare events whose magnetic field structures appeared to be different from the KB12 model. For instance, some flare events did not show two-ribbon structure in the initial phase although the small-sale magnetic field which might work as flare-trigger field can be identified at the center of the sheared two-ribbon. Also some flares did not show the pre-flare brightening that was predicted as a proxy of magnetic reconnection between the flare-trigger field and sheared magnetic field which carries free magnetic energy. Although those events were far complex than the KB12 model, they might not be inconsistent with the model. In this presentation, we review the current status of our understanding for flare triggering, especially, about the applicability of the KB12 model to various types events. Moreover, we discuss whether we can unify the flare trigger models and what kinds of studies are required to understand flare trigger mechanisms.