Hinode SOT has played a key role in the reinvigoration of the study of the fine-scale dynamics of prominences. Observations that have allowed us to perform detailed investigations of the Rayleigh-Taylor instability, nonlinear flows, turbulence and MHD waves, to name but a few phenomena, have all been possible and have taught us about prominences and also shed some light on how these dynamic phenomena work in astrophysical systems. In this talk I will look at the observations, and the theory that they have helped developed. I will look at how the magnetic Rayleigh-Taylor instability can develop in prominences and what the plumes this instability creates can tell us about prominences. I will look at the how it has been possible to investigate MHD turbulence in prominences, and how this connects to the theory of Alfvénic turbulence. I will look at the downward flow of material in prominence knots, putting forward a dynamic model or their creation based on magnetic reconnection. Finally, I will also try to look at the potential role that partial ionisation may be playing in these observed dynamics.